Vai al contenuto

Alessandro Tassinari

Amministratori
  • Numero contenuti

    1.540
  • Iscritto

  • Ultima visita

  • Giorni Vinti

    37

Tutti i contenuti di Alessandro Tassinari

  1. Probabilmente il parametro è "distanza di contatto z", ma impostato su 0.1mm dovrebbe essere ok. Ti chiedo, i supporti vengono via facilmente o si attaccano alla superficie orizzontale? Devo dire che non mi piace molto questo mix di parametri tra raft e supporti...
  2. Sembra che la superficie inferiore sia troppo distante dal supporto, di conseguenza resta troppo spazio per il materiale. È una cosa delicata, devi trovare la giusta distanza per evitare che il supporto si attacchi. Ora non ricordo come si chiama il parametro, ma lo trovi sicuramente tra quello di gestione supporti.
  3. Come funziona una stampante 3D? In questa guida ti spiego in modo semplice come funzionano le stampanti 3D a filamento, a resina e a polvere. La stampante 3D è uno strumento che permette di produrre oggetti partendo da un modello digitale tridimensionale. Nei metodi di stampa 3D più conosciuti la produzione dell’oggetto avviene per strati, posizionando uno strato di materiale sopra l’altro. Se vuoi sapere qualcosa in più su come funziona la stampa 3D, nelle prossime righe troverai tutte le informazioni che stai cercando! In questa guida: > Differenze tra Stampa 3D e Additive Manufacturing > Come funziona stampante 3D a filamento > Come funziona stampante 3D a resina > Come funziona stampante 3D a polvere > Come funziona stampante 3D a polveri di metallo > Guida completa alle tecnologie di stampa 3D > Guadagnare con la stampa 3D Differenze tra Stampa 3D e Additive Manufacturing Il termine “stampa 3D” è il più utilizzato negli ultimi cinque-dieci anni e indica in modo generico qualsiasi tecnologia di tipo additivo con lo scopo di produrre oggetti. La sua grande diffusione si deve alla popolarità che ha riscontrato nel mondo dei consumatori: la dicitura “stampa 3D” ricorda in modo diretto la stampa bidimensionale tradizionale, rendendo facilmente l’idea di come funzioni. A livello industriale e professionale, la medesima tecnologia è più comunemente chiamata “manifattura additiva” – dall’inglese “Additive Manufacturing” – enfatizzando maggiormente il ruolo manifatturiero di questa tecnica. Con Additive Manufacturing si indicano in particolare le tecnologie di stampa 3D più costose, utilizzate soprattutto da professionisti e aziende, e che sfruttano materiali tecnici e più performanti sotto diversi aspetti (polimeri e resine, metalli, polveri). Indipendentemente dalla terminologia utilizzata, sia la stampa 3D che la manifattura additiva indicano un processo produttivo basato su una “tecnica additiva”, ossia che produce oggetti tramite l’aggiunta di materiale. Le tecnologie di stampa 3D differiscono tra di loro per meccanica e funzionamento stesso delle macchine, oltre che per il tipo di materiali supportati. In alcuni casi esistono più nomi per la stessa tecnica: questa varietà è dovuta soprattutto alla presenza di più produttori che, nel corso del tempo, hanno registrato brevetti per metodi di stampa 3D molto simili tra loro. Torna all'Indice Come funziona stampante 3D a filamento Tra i metodi di stampa 3D, è sicuramente quello più comune ed economico. La stampa 3D a filamento funziona tramite estrusione di materiale. Infatti, in genere ci si riferisce a questo metodo con le diciture FFF - Fused Filament Fabrication- o FDM - Fused Deposition Modeling. Il funzionamento è molto semplice: un polimero sotto forma di filamento viene riscaldato da una resistenza e spinto attraverso un ugello, il quale, spostandosi all’interno del volume di lavoro, va a depositare il materiale strato su strato. La temperatura di estrusione dipende dal polimero utilizzato nella fase di stampa. Il materiale usato più comunemente è il PLA (Acido Polilattico) e viene estruso ad una temperatura compresa tra i 180 e 210 °C. Altri materiali richiedono temperature di estrusione ben maggiori, a volte anche 300-400 °C come l’ULTEM, il PEEK o il PMMA. Anche il PETG è un materiale molto utilizzato, perché economico e facile da stampare come il PLA, ma molto più resistente. Stampa 3D FDM - Qualche consiglio per l'acquisto Come già ti accennavo, le stampanti 3D a filamento sono le più economiche in assoluto. Questo perché la tecnologia di per sé è davvero molto semplice e le componenti molto comuni. Se stai cercando una stampante economica da posizionare in casa tua o nel tuo laboratorio, ho quello che fa per te: una guida dedicata alle stampanti 3D più economiche in assoluto. Molte di queste sono FDM. Per risparmiare tempo nella tua ricerca, potresti darci un'occhio! Per quanto riguarda i filamenti, sicuramente avrai modo di scoprire quello che può fa al caso tuo in base alle caratteristiche che cerchi. Quella che segue è una lista dei filamenti più economici in assoluto. Lo sapevi che potresti realizzare in casa tua il filamento per stampare in 3D? Scopri come! Torna all'Indice Come funziona stampante 3D a resina Il funzionamento di una stampante 3D a resina è molto diverso da quello delle stampanti a filo. Le stampanti 3D a resina realizzano oggetti partendo da una vasca contenente resine allo stato liquido. Il processo prevede la solidificazione di uno strato di materiale sopra l’altro per mezzo di una fonte luminosa. La resina utilizzata è una resina fotosensibile, cioè un materiale che reagisce e solidifica se sottoposto a fonti luminose. Tali resine fotosensibili presentano scarse qualità meccaniche e deterioramento precoce, soprattutto se esposte a raggi solari o all’umidità. Oggi però esistono resine dotate di caratteristiche meccaniche notevoli, disponibili soprattutto per i sistemi che prevedono l'uso di laser per attivare la fotopolimerizzazione. Da considerare, infatti, è che l'azione del laser è più potente e precisa rispetto a quella di uno schermo LCD o di un video proiettore. Entrami i sistemi che ho descritto sono utilizzati molto di comune e vanno da definire due tecnologie di stampa 3D a resina diverse: la Stereolitografia - SLA - dove viene usato un laser; il Digital Light Printing - DLP - dove viene usato un video proiettore. Nel caso sia usato uno schermo LCD come fonte luminosa, il processo è comunemente chiamato "LCD". Mentre nella tecnologia SLA il laser si muove sulla parte superficiale della resina, arrivando a solidificare lo strato interessato punto per punto, la tecnologia DLP solidifica uno strato intero alla volta, proiettando un fascio di luce su tutta la superficie da lavorare. Il tempo impiegato per solidificare gli strati dipende dalla potenza della fonte luminosa originaria e dalla dispersione di luce, che è bene avvenga il meno possibile per garantire una buona riuscita di stampa. Per sostenere le parti a sbalzo dell’oggetto in stampa è necessario utilizzare dei supporti, che possono essere disegnati appositamente o generati dal software CAM in modo automatico. Torna all'Indice Come funziona stampante 3D a polvere Le stampanti 3D a polvere utilizzano un processo chiamato "sinterizzazione". Per “sinterizzazione” - SLS - s’intende una lavorazione che permette di ottenere elementi compatti partendo da materiali polverulenti. Questa tecnologia sfrutta una luce laser che va a colpire uno strato di polvere accolta all’interno di una vasca, fondendo tra di loro le particelle interessate. La sinterizzazione può essere vista come la saldatura tra piccole particelle solide. La costruzione degli oggetti avviene sinterizzando uno strato di polvere sull’altro. A fine stampa sarà quindi necessario rimuovere l’oggetto dalla vasca in cui è stato prodotto e pulirlo dalle polveri circostanti, che non sono state colpite dal raggio laser. Utilizzando una stampante 3D SLS non servono i supporti all’oggetto in stampa poiché, il materiale che non viene sinterizzato, fa da supporto agli strati successivi. Inoltre, il materiale che all’interno di una sessione di stampa non viene impiegato sarà riutilizzabile nuovamente. I materiali utilizzabili sono generalmente a base polimerica e possono contenere caricature di diverso tipo (nylon caricato alluminio, nylon caricato carbonio, poliammide). L’altezza degli strati di stampa può arrivare a grandezze nell’ordine dei 20 micron. Come funziona stampante 3D a polveri di metallo Se ti stai chiedendo come funziona esattamente la stampa 3D a polveri di metallo, te lo spiego subito. La tecnologia SLS è stata tra le prime ad essere trasformata per permettere la stampa 3D in metallo. Il passaggio è stato abbastanza semplice, in quanto meccanica e componenti erano già disponibili: per rendere stampabile il metallo basta avere una fonte di energia più potente e utilizzare un volume di stampa sottovuoto o carico di gas inerti. Le tecnologie che sono in grado di gestire questo processo sono chiamate Direct Metal Laser Sintering - DMLS - o Direct Metal Printing - DMP. In questo caso è prevista la vera e propria fusione tra le particelle. Torna all'Indice Guida completa alle tecnologie di stampa 3D Le tecnologie a filamento, resina e polvere offrono sicuramente un'ottima panoramica sul funzionamento delle stampanti 3D. I metodi di stampa 3D che ti ho presentato finora sono i più comuni in assoluto, ma non sono gli unici. In realtà esistono molte altre tecnologie di stampa 3D, che si differenziano per tipologia di processo e materiali utilizzati. Per esempio, una delle classificazioni più usate vede la differenziazione a seconda dell'uso di polimeri e metalli. Inoltre, le stesse tecnologie a filamento, resina e polvere contengono a loro volta delle sotto categorie di stampanti, che funzionano in modo leggermente diverso. Se vuoi saperne di più, di seguito ti lascio il link alla guida completa alle tecnologie di stampa 3D. Lì potrai approfondire e toglierti qualsiasi dubbio 😎 Guadagnare con la stampa 3D La stampa 3D potrebbe diventare per te un vero e proprio business. Il primo passo per farlo è conoscere sapere come funziona la stampa 3D e quali sono le tecnologie più comuni, così da essere poi in grado di utilizzare quella che meglio si addice alle tue necessità. Dopo aver letto questa guida qualche informazione in più dovresti averla! Ora potresti iniziare a pensare a un modo per rendere redditizia la tua conoscenza. Qualche spunto io te lo lascio 😉 Torna all'Indice
  4. Grazie, sono felice che tu lo abbia trovato utile! E' vero, a parte quelle che conosciamo tutti molto bene, diverse sono costose e accessibili solo se si ha a disposizione budget di spesa non indifferenti. In ogni caso, farsi un po' di cultura a riguardo non fa mai male 😇
  5. Beh ti direi che no, non è normale che la stampa esca rovinata. Il modello che hai stampato ha delle pareti molto spesse? Spessori eccessivi possono causare difetti sulle superfici.
  6. In questa guida ti spiego in modo semplice come funzionano tutte le tecnologie di stampa 3D utilizzate oggi. Scoprirai come funzionano le tipi di stampa 3D FDM, SLA, MSLA, DLP, SLS, DMLS, SLM, EBM, Material Jetting, DOD, Binder Jetting e molte altre. Una delle attività più impegnative che progettisti e ingegneri si trovano a svolgere la prima volta che hanno a che fare con la stampa 3D è quella di navigare nel vasto numero di tipi di stampa 3D, cercando la soluzione che più si addice alle proprie necessità. In genere, le prime domande sono sempre le stesse: come funziona una stampante 3D? Oppure, quali materiali si possono usare? In questa guida trovi una descrizione dettagliata di tutte le tipologie di stampa 3D. Ti mostrerò come funzionano, quali sono i materiali usati e le applicazioni in cui vengono coinvolte, sottolineando i pro e i contro di ognuna. Sfruttando queste informazioni sarai in grado di determinare quale tecnologia è meglio sfruttare a seconda degli oggetti che dovrai realizzare. In questa guida: > Classificazione dei tipi di stampa 3D > Stampa 3D a estrusione > Stampa 3D a resina > Stampa 3D a fusione di polveri (Powder Bed Fusion) > Stampa 3D a getto di materiale (Material Jetting) > Stampa 3D a getto di legante (Binder Getting) > Stampa 3D a energia diretta (Direct Energy Deposition) > Stampa 3D a laminazione Classificazione dei tipi di stampa 3D Scegliere la tecnologia di stampa 3D a seconda dei pezzi da realizzare non è un'attività facile. I processi di fabbricazione additiva variano in precisione, resistenze meccaniche raggiungibili, materiali utilizzabili e finitura. La categorizzazione più utilizzata nell'ambito della stampa 3D deriva da un regolamento standard istituito nel 2015. Il documento a cui fa riferimento l'industria, e al quale anche noi saremo fedeli in questa guida, è lo Standard ISO/ASTM 52900. Grazie a questo standard è stata fatta una classificazione delle tecnologie di stampa 3D in "processi". Inoltre, è stata standardizzata anche la terminologia legata all'ambito della stampa 3D, così da semplificare la descrizione dei vari metodi di produzione. Classificazione delle tecnologie di stampa 3D in base ai materiali Le tecnologie di stampa 3D possono essere distinte anche in base alla tipologie di materiali utilizzabili. I materiali per la stampa 3D sono numerosi e si differenziano tra loro secondo diverse caratteristiche. Di base però, possiamo sicuramente fare una prima distinzione in due gruppi: polimeri e metalli. Polimeri Il gruppo dei polimeri racchiude in vasto numero di materiali che presentano proprietà molto diverse tra loro, trovando spazio in un numero molto alto di applicazioni. Se ti guardi intorno, ti renderai immediatamente conto di quanto i polimeri siano usati nell'industria. Oggi infatti, il mercato dei polimeri supera di gran lunga quelli di altri materiali. Nella stampa 3D i materiali di consumo si presentano solitamente in tre forme - filamenti, resine e polveri. Nello specifico, i polimeri si suddividono principalmente in due gruppi: termoplastiche e termoindurenti. La differenza tra questi due sta essenzialmente nel comportamento che assumono se sottoposti a calore. Termoplastiche Le termoplastiche possono passare dallo stato liquido allo stato solido più volte nel tempo, mantenendo praticamente inalterate le proprie caratteristiche. Le termoplastiche sono usate nel processo di stampa 3D a filamento fuso, come anche nella tradizionale produzione tramite stampi. Risulta evidente quindi come l'uso delle termoplastiche preveda una fase di fusione, a cui segue una fase di estrusione o iniezione, e infine una fase di raffreddamento e solidificazione. Termoindurenti A differenza delle termoplastiche, i polimeri termoindurenti non entrano mai nello stato di fusione. I polimeri termoindurenti si presentano solitamente sotto forma di fluidi viscosi, ad esempio resine, e passano allo stato solido indurendosi a seguito dell'azione di un'agente come: esposizione al calore; esposizione alla luce; catalisi (reazione chimica che avviene quando il termoindurente entra in contatto con un secondo materiale, detto catalizzatore). Se vengono fusi, i termoindurenti perdono interamente le proprie caratteristiche tecniche. Questo significa che i materiali facenti parte di questa categoria non possono essere trasformati tramite fusione per poi essere riutilizzati. Tra le tecnologie di stampa 3D, le tecnologie SLA, DLP e Material Jetting sfruttano polimeri termoindurenti in fase di produzione. La solidificazione del materiale avviene a seguito dell'azione di un laser o di una luce UV. Metalli A differenza dei polimeri, i quali sono essenzialmente usati sotto forma di filamenti, polveri e resine, la stampa 3D a metallo prevede quasi esclusivamente l'uso di materiali in polvere. La stampa 3D in metallo predilige l'alta precisione nella realizzazione di pezzi funzionali e performanti. La dimensione delle particelle, la loro distribuzione, la forma e l'attrito tra loro stesse sono tutte proprietà che determinano la qualità di realizzazione dei pezzi. La stampa 3D a metallo non si ferma all'uso di materiali come l'acciaio. Sono diverse le applicazioni che vedono l'impiego di polveri di titanio, oro, argento e altre leghe. Altri materiali Alcune tecnologie di stampa 3D sono in grado di utilizzare materiali compositi a fibra lunga, filamenti caricati con polveri di ceramica o polveri metalliche e sabbia. In questo gruppo ricadono tutti quei materiali meno conosciuti e che soddisfano richieste di nicchia. Torna all'Indice Stampa 3D a estrusione La stampa 3D a estrusione è la più conosciuta. In questo processo, il materiale viene estruso attraverso un ugello. Il più delle volte quel materiale è un filamento di plastica spinto attraverso un ugello riscaldato, che lo scioglie e lo deposita su di un piano. La stampante deposita il materiale su una piattaforma di costruzione lungo un percorso predeterminato, dove il filamento si raffredda e si solidifica per formare un oggetto solido. In questo processo sono usati anche materiali compositi come pasta di metallo, biogel, cemento, cioccolato e una vasta gamma di altri materiali. Caratteristiche principali: Tipi di tecnologia di stampa 3D: stampa a deposizione di filamento fuso (FDM), a volte chiamata Fused Filament Fabrication (FFF); Materiali: filamento di plastica (PLA, ABS, PET, PETG, TPU, nylon, ASA, PC, HIPS, fibra di carbonio e molti altri); Precisione dimensionale: ±0,5% (limite inferiore ±0,5 mm); Applicazioni comuni: alloggiamenti elettrici, prototipi di geometria e forma, dispositivi di vario genere, modelli per microfusione, ecc; Punti di forza: basso costo, ampia gamma di materiali. Fanno parte di questo processo di stampa: > Stampa a filamento fuso - Fused Deposition Modeling (FDM) Stampa a filamento fuso - Fused Deposition Modeling (FDM) Comunemente chiamata con gli acronimi FFF - Fused Filament Fabrication - o FDM – Fused Deposition Modeling – questa tecnologia di stampa 3D è la più comune ed economica. Un filamento di materiale, generalmente un polimero, viene riscaldato da una resistenza e spinto attraverso un ugello il quale, spostandosi all’interno del volume di lavoro, va a depositare il materiale strato su strato. La temperatura di estrusione dipende dal polimero utilizzato nella fase di stampa. Il materiale usato più comunemente è il PLA (Acido Polilattico) e viene estruso ad una temperatura compresa tra i 180 e 210 °C. Altri materiali richiedono temperature di estrusione ben maggiori, a volte anche 300-400 °C come l’ULTEM (materiale altamente performante e resistente alle deformazioni), il PEEK (apprezzato per l’alta resistenza termica) o il PMMA (comunemente chiamato Plexiglass). La dimensione del foro dell’ugello di estrusione può variare a seconda delle necessità: si parte dai decimi di centimetro fino ad arrivare a diversi millimetri di diametro. Il diametro dell’ugello definisce due parametri molto importanti: la velocità di stampa (a parità di dimensioni dell’oggetto in stampa, un ugello più grande estrude più materiale, permettendo di finire la lavorazione più velocemente); la precisione con cui viene depositato il materiale (un ugello più piccolo permette di ottenere forme più precise). Comunemente, si dice che la tecnologia FDM viene utilizzata anche per realizzare edifici stampati in 3D estrudendo argilla o cemento, dolci e cibo stampati 3D estrudendo cioccolato, organi stampati in 3D estrudendo cellule vive in un gel biologico, ecc. A mio avviso questa di tratta di una grande approssimazione. Per quanto il processo di stampa sia molto similare, le componenti cambiano. Ad esempio, per stampare argilla è necessario montare un estrusore apposito dotato di una vite e senza riscaldatore. Fai sempre attenzione a questi dettagli! Torna all'Indice Stampa 3D a resina La polimerizzazione in vasca è un processo di stampa 3D in cui una sorgente di luce polimerizza in modo selettivo una resina fotopolimerica raccolta in una vasca. A livello pratico abbiamo a che fare con una fonte luminosa che viene diretta con precisione verso un punto specifico su un sottile strato di plastica liquida, facendola indurire. Questo processo viene ripetuto strato dopo strato fino a formare l'oggetto 3D. Le tecnologie più comuni di polimerizzazione in vasca sono la stereolitografia (SLA), la Digital Light Processing (DLP) e la Masked Stereolitography (MSLA). La differenza fondamentale tra questi tipi di tecnologia di stampa 3D è la fonte di luce che usano per polimerizzare la resina. Alcuni produttori di stampanti 3D, in particolare quelli che producono stampanti 3D di livello professionale, utilizzano varianti leggermente differenti e brevettate. Ne consegue che sia abbastanza comune trovare diversi tipi di tecnologia SLA sul mercato. Alcuni esempi possono essere Carbon, la quale utilizza una tecnologia di polimerizzazione in vasca chiamata Digital Light Synthesis (DLS), Origin di Stratasys chiama la sua tecnologia Programmable Photopolymerization (P³), Formlabs con la Low Force Stereolithography (LFS) e Azul 3D con la tecnologia HARP. Caratteristiche principali: Tipi di tecnologia di stampa 3D: stereolitografia (SLA), Masked Stereolitography (MSLA), microstereolitografia (µSLA) ecc. Materiali: Resine fotopolimeriche (colabili, trasparenti, industriali, biocompatibili, ecc.) Precisione dimensionale: ±0,5% (limite inferiore ±0,15 mm o 5 nanometri con µSLA) Applicazioni comuni: prototipi di polimeri simili a stampi a iniezione; colata di gioielli; applicazioni odontoiatriche Punti di forza: finitura superficiale liscia, dettagli fini Fanno parte di questo processo di stampa: > Stereolitografia (SLA) > Digital Light Processing (DLP) Stereolitografia (SLA) La tecnologia SLA è stata prima in assoluto ad essere inventata. La stereolitografia è stata inventata da Chuck Hull nel 1986, usata e commercializzata dalla società 3D Systems. Le stampanti 3D a stereolitografia permettono di realizzare oggetti partendo da una vasca contenente resine epossidiche allo stato liquido. Il processo prevede la solidificazione di uno strato di resina sopra l’altro per mezzo di un raggio laser che viene riflesso da una lente che disegna gli strati dell’oggetto interessato. Le resine utilizzate con questa tecnologia sono dei fotopolimeri, ossia materiali polimerici che si solidificano se sottoposti ad un raggio di luce avente determinate caratteristiche. Tali resine fotosensibili presentano scarse qualità meccaniche e deterioramento precoce, soprattutto se esposte a raggi solari o all’umidità. Per sostenere le parti a sbalzo dell’oggetto di stampa è necessario utilizzare dei supporti, che possono essere disegnati appositamente o calcolati dal software CAM in modo automatico. Gli oggetti prodotti attraverso stereolitografia sono anche utilizzati per lo stampaggio a iniezione, per la termoformatura, per la soffiatura e per processi che prevedono colate di metallo, in quanto risultano sufficientemente resistenti alle sollecitazioni sul materiale. Lo svantaggio della stereolitografia rispetto alla tecnologia DLP - che vediamo nel prossimo paragrafo - è che, utilizzando un laser che "lavora per punti", il processo di stampa può richiedere più tempo. Torna all'Indice Digital Light Processing DLP Se nel metodo SLA la luce utilizzata per fotopolimerizzare la resina proviene da un laser, il metodo DLP utilizza invece un fascio di luce proveniente da proiettori o schermi LCD. Il processo prevede anche in questo caso la fotopolimerizzazione di una resina fotosensibile, che si trova inizialmente allo stato liquido, tramite dei flash ad alta luminosità. La luce viene proiettata sulla resina utilizzando schermi a diodi a emissione di luce (LED) o una sorgente di luce UV (lampada) diretta alla superficie di costruzione da un dispositivo a microspecchi digitali (DMD). Il dispositivo digitale a microspecchi, chiamato DMD – Digital Micromirror Device - corrisponde ad un meccanismo di modulazione di luce spaziale. Questo permette di coprire in modo dinamico un’ampia area di luce. La precisione di questo sistema di specchi permette di arrivare a qualità di stampa notevoli, pari circa a 30 micron. Mentre nella tecnologia SLA il laser si muove sulla parte superficiale della resina, arrivando a solidificare lo strato interessato punto per punto, la tecnologia DLP solidifica uno strato intero alla volta, proiettando un fascio di luce su tutta la superficie da lavorare. Il tempo impiegato per solidificare gli strati dipende dalla potenza della fonte luminosa originaria e dalla dispersione di luce, che è bene avvenga il meno possibile per garantire una buona riuscita di stampa. Le stampanti DLP possono utilizzare un’ampia gamma di materiali, anche morbidi e flessibili. Poiché vengono usati schermi LCD e proiettori, i quali sono schermi digitali composti da pixel, l'immagine proiettata di ogni strato è composta da pixel quadrati estrusi, chiamati voxel. Torna all'Indice Stampa 3D a fusione di polveri (Powder Bed Fusion) La stampa 3D a fusione di polveri è un processo in cui una fonte di energia termica induce selettivamente la fusione tra particelle di polvere (plastica, metallo o ceramica) all'interno di un'area di stampa, così da creare l'oggetto solido strato dopo strato. In questa metodologia, le macchine posizionano un sottile strato di materiale in polvere sul letto di stampa, in genere con una lama, su cui poi agisce la fonte di calore che fonde le particelle tra di loro. In seguito, un altro strato di materiale viene depositato e a sua volta fuso. Il processo si ripete fino a fine lavoro. Caratteristiche principali: Tipi di tecnologia di stampa 3D: Sinterizzazione Laser (SLS), Selective Laser Melting (SLM), fusione con fascio di elettroni (EBM), Direct Metal Laser Sintering (DMLS), Multi Jet Fusion (MJF) Materiali: Polveri termoplastiche (Nylon 6, Nylon 11, Nylon 12, ecc.), polveri metalliche (acciaio, titanio, alluminio, cobalto, ecc.), polveri ceramiche Precisione dimensionale: ±0,3% (limite inferiore ±0,3 mm) Applicazioni comuni: parti funzionali, tubazioni complesse (disegni cavi), produzione di parti a basse tirature Punti di forza: parti funzionali, ottime proprietà meccaniche, geometrie complesse Fanno parte di questo processo di stampa: > Sinterizzazione Laser (SLS) > Direct Metal Laser Sintering (DMLS) / Selective Laser Melting (SLM) > Electron Beam Melting (EBM) > Multi Jet Fusion (MJF) Sinterizzazione Laser (SLS) Per “sinterizzazione” s’intende una lavorazione che permette di ottenere elementi compatti partendo da materiali polverulenti. Questa tecnologia sfrutta una luce laser che va a colpire uno strato di polvere, solitamente polimerica, accolta all’interno di una vasca, e che sinterizza tra di loro le particelle interessate. Banalmente, la sinterizzazione può essere vista come la saldatura tra piccole particelle solide. La costruzione degli oggetti avviene sinterizzando uno strato di polvere sull’altro: alla fine sarà quindi necessario rimuovere l’oggetto dalla vasca in cui è stato prodotto e pulirlo dalle polveri circostanti, che non sono state colpite dal raggio laser. I materiali utilizzabili sono generalmente polimeri e possono contenere caricature di diverso tipo (nylon caricato alluminio, nylon caricato carbonio, poliammide). L’altezza degli strati di stampa può arrivare a grandezze nell’ordine dei 20 micron. Sono note tecnologie che prevedono l'uso di materiali differenti, come nel caso del Micro Selective Laser Sintering (μSLS). Il Micro Selective Laser Sintering è essenzialmente una tecnologia SLS su scala ridotta e spesso chiamata micro sinterizzazione laser. In μSLS vengono usati comunemente metalli. μSLS può produrre parti metalliche 3D con una risoluzione inferiore a 5 μm e una produttività superiore a 60 mm3/ora. Utilizzando una stampante 3D SLS non servono i supporti all’oggetto in stampa poiché, il materiale che non viene sinterizzato, fa da supporto agli strati successivi. Inoltre, il materiale che all’interno di una sessione di stampa non viene impiegato sarà riutilizzabile nuovamente. Torna all'Indice Direct Metal Laser Sintering (DMLS) / Selective Laser Melting (SLM) Sia la Direct Metal Laser Sintering (DMLS) che la Selective Laser Melting (SLM) derivano dalla tecnologia a Sinterizzazione SLS. La differenza principale è che questi tipi di tecnologia di stampa 3D vengono applicati per realizzare componenti in metallo. La tecnologia DMLS non scioglie la polvere, ma la riscalda fino a produrre una fusione a livello molecolare. In questo modo si ottiene una lega metallica. La tecnologia SLM utilizza il laser per ottenere una vera e propria fusione della polvere metallica. Con questo sistema si ottiene un materiale puro, come il titanio. Torna all'Indice Electron Beam Melting (EBM) La fusione tramite fascio di elettroni (EBM) utilizza un raggio ad alta energia, o elettroni, per indurre la fusione tra le particelle di polvere metallica. Il processo prevede il passaggio di un fascio di elettroni su un sottile strato di polvere, provocando la fusione e la solidificazione localizzate di una specifica area del piatto di stampa. Il risultato è quindi la solidificazione del singolo layer del pezzo in stampa. Rispetto ai tipi di tecnologia di stampa 3D SLM e DMLS, EBM ha generalmente una velocità di stampa superiore grazie della sua maggiore densità di energia. Tuttavia, caratteristiche come la dimensione minima dei dettagli, la dimensione delle particelle di polvere, lo spessore dello strato e la finitura superficiale sono in genere più grossolane. Nel processo EBM le parti sono fabbricate sotto vuoto. Inoltre, il processo può essere utilizzato solo con materiali conduttivi. Torna all'Indice Multi Jet Fusion (MJF) Multi Jet Fusion è tecnicamente una tecnologia di stampa 3D a fusione di letto di polvere, sebbene abbia somiglianze con il Binder Jetting. La tecnologia Multi Jet Fusion è stata introdotta sul mercato da HP nel 2016 e deriva da decenni di investimenti di HP nella stampa a getto d'inchiostro, nei materiali "a getto", nella meccanica di precisione a basso costo, nella scienza dei materiali e nei sistemi di "imaging". La tecnologia prende il nome dalle molteplici testine a getto d'inchiostro che eseguono il processo di stampa. Nel processo di stampa Multi Jet Fusion, la stampante depone uno strato di polvere di materiale sul piano di stampa. In seguito, una testina a getto d'inchiostro attraversa la polvere e deposita su di essa sia un agente di fusione che un agente di dettaglio. Un'unità di riscaldamento a infrarossi si sposta in seguito sullo strato di stampa. Col passaggio degli infrarossi, gli agenti reagiscono e attivano una fusione del layer con quello sottostante. Le aree dove è stato depositato l'agente di dettaglio rimangono sotto forma di polvere, in quanto hanno solo funzione di generare i dettagli della geometria. Ciò elimina la necessità di usare supporti, poiché gli strati inferiori supportano quelli stampati sopra. HP afferma che una stampante Multi Jet Fusion differisce dalla maggior parte delle altre tecnologie di stampa 3D in quanto ogni nuovo strato di materiale e agente viene posizionato mentre lo strato precedente è ancora in fase di fusione. Ciò consente agli strati di fondersi completamente, offrendo dettagli più fini e caratteristiche migliori. Per completare il processo di stampa, l'intero letto di polvere - e le parti stampate in esso contenute - vengono spostati in una stazione di elaborazione separata. Qui, la maggior parte della polvere non fusa viene aspirata, consentendo di riutilizzarla. Torna all'Indice Stampa 3D a getto di materiale (Material Jetting) Il Material Jetting è un processo di stampa 3D in cui goccioline di materiale vengono depositate in modo controllato e polimerizzate su un piano di stampa. Solitamente si tratta di fotopolimeri o goccioline di cera che polimerizzano se esposte alla luce. Il processo consente di stampare materiali diversi nel singolo oggetto, aggiungendo anche colori e trame. Si tratta di un processo con buona finitura superficiale ed estetica, usato per produrre prototipi a colori e multimateriale. Caratteristiche principali: Tipi di tecnologia di stampa 3D: Material Jetting (MJ), Drop on Demand (DOD) Materiali: Resina fotopolimerica (standard, calcinabile, trasparente, alta temperatura) Precisione dimensionale: ±0,1 mm Applicazioni comuni: prototipi di prodotti a colori; prototipi simili a stampi a iniezione; stampi ad iniezione a bassa tiratura; modelli medici Punti di forza: Migliore finitura superficiale; Disponibile in quadricromia e multimateriale Punti di debolezza: fragile, non adatto per parti meccaniche; Costo superiore a SLA/DLP per scopi visivi Fanno parte di questo processo di stampa: > Material Jetting (MJ) > Drop On Demand (DOD) Material Jetting (MJ) Il Material Jetting (MJ) funziona in modo simile a una stampante a getto d'inchiostro standard. La differenza è che, invece di stampare un singolo strato di inchiostro, gli strati vengono costruiti l'uno sull'altro per creare un oggetto solido. La testina di stampa emette centinaia di minuscole goccioline di fotopolimero e quindi le polimerizza/solidifica utilizzando la luce ultravioletta (UV). Dopo che uno strato è stato depositato e polimerizzato, la piattaforma di costruzione viene abbassata e il processo viene ripetuto per costruire un oggetto 3D. Il Material Jetting si differenzia da altri tipi di tecnologia di stampa 3D che depositano, sinterizzano o polimerizzano il materiale di costruzione perché, invece di focalizzarsi su punti singoli dello strato, deposita e solidifica il materiale in modo omogeneo su tutto il layer. Il vantaggio della deposizione in linea è che si possono fabbricare più oggetti senza avere alcun impatto sulla tempistica di stampa. Gli oggetti realizzati tramite Material Jetting richiedono i supporti, che viene stampato simultaneamente durante la costruzione con un materiale solubile, di seguito rimosso durante la fase di post-produzione. Il Material Jetting è uno dei pochi tipi di tecnologia di stampa 3D a offrire oggetti realizzati con stampa multimateriale e full-color. Torna all'Indice Drop On Demand (DOD) Drop on Demand (DOD) è un tipo di tecnologia di stampa 3D che utilizza una coppia di getti d'inchiostro. Il primo deposita il materiale di stampa, che in genere è un materiale simile alla cera. Il secondo deposita un materiale di supporto solubile. Come in le altre tecnologie di stampa 3D, le stampanti DOD eseguono un percorso predeterminato per depositare materiale in modo puntuale. Le stampanti DOD utilizzano anche una sorta di raschietto, che sfiora il layer appena stampato e lo livella, garantendo una superficie perfettamente piana prima di iniziare lo strato successivo. Le stampanti DOD vengono solitamente utilizzate per creare modelli adatti per la fusione a cera persa, la microfusione e altre applicazioni di costruzione di stampi. Torna all'Indice Stampa 3D a getto di legante (Binder Getting) La stampa 3D a getto di legante è un processo di stampa 3D in cui un agente legante liquido lega aree definite di un letto di polvere. Il getto di legante è una tecnologia di stampa 3D simile a SLS, dove è previsto uno strato iniziale di polvere sulla piattaforma di stampa. A differenza dell'SLS però, il Binder Jetting sposta una testina di stampa sulla superficie della polvere, depositando goccioline di legante, che in genere hanno un diametro di 80 micron. Queste goccioline legano insieme le particelle di polvere, generando il layer dell'oggetto. Una volta che uno strato è stato stampato, il letto di polvere viene abbassato e un nuovo strato di polvere viene distribuito sul layer precedente. Questo processo viene ripetuto fino a formare l'oggetto completo. L'oggetto viene quindi lasciato nella polvere per indurire e acquisire le sue caratteristiche meccaniche. Successivamente, l'oggetto viene rimosso dal letto di polvere e l'eventuale polvere rimasta viene rimossa utilizzando aria compressa. Caratteristiche principali: Tipi di tecnologia di stampa 3D: getto di legante Materiali: Sabbia, polimero o polvere di metallo: Inossidabile/Bronzo, Sabbia; compositi Ceramica-Metallo Precisione dimensionale: ±0,2 mm (metallo) o ±0,3 mm (sabbia) Applicazioni comuni: parti metalliche funzionali; Modelli a colori; Colata in sabbia Punti di forza: basso costo; Grandi volumi di costruzione; Parti metalliche funzionali, riproduzione dei colori eccezionale, velocità di stampa elevate, flessibilità di progettazione senza supporto Punti deboli: Proprietà meccaniche non buone come la fusione a letto di polvere di metallo Fanno parte di questo processo di stampa: > Sand Binder Jetting > Metal Binder Jetting > Plastic Binder Jetting Sand Binder Jetting Il Sand Binder Jetting è un processo a basso costo usato per la produzione di parti da sabbia, ad esempio arenaria o gesso. Dopo la stampa, gli oggetti prodotti vengono rimossi dal volume di costruzione e puliti per rimuovere la sabia rimasta in superficie. Gli stampi sono in genere immediatamente pronti per la colata in metallo fuso. Dopo la colata, lo stampo viene rotto e il componente metallico finale viene rimosso. Il processo è abbastanza facile da integrare nei processi di produzione o fonderia esistenti. Inoltre permette di produrre geometrie grandi e complesse a costi relativamente bassi. Metal Binder Jetting Il Binder Jetting può essere utilizzato anche per la fabbricazione di oggetti metallici. La polvere di metallo viene legata utilizzando un agente legante polimerico. Il processo prevede, a seguito della fase di stampa, una fase di infiltrazione e di sinterizzazione dei pezzi realizzati, fondamentali per far raggiungere alle componenti le caratteristiche meccaniche desiderate. Se queste fasi non sono eseguite, una parte realizzata in metallo tramite Binder Jetting avrà scarse proprietà meccaniche. Il processo di infiltrazione funziona come segue: inizialmente, le particelle di polvere metallica vengono legate insieme utilizzando un agente legante per formare un oggetto in "green state". Una volta che gli oggetti sono completamente induriti, vengono rimossi dalla polvere e posti in una fornace, dove il legante viene bruciato. Ciò lascia l'oggetto a una densità di circa il 60%. Successivamente, viene fatta una infiltrazione di bronzo in modo da riempire i capillari aperti, ottenendo un oggetto con una densità di circa il 90% e una maggiore resistenza. Gli oggetti realizzati con Metal Binder Jetting hanno generalmente proprietà meccaniche inferiori rispetto alle parti metalliche realizzate con Powder Bed Fusion. Il processo di sinterizzazione può essere applicato laddove le parti metalliche siano realizzate senza infiltrazioni. Al termine della stampa, gli oggetti con in "green state" vengono inseriti in un forno per rimuovere il legante. Successivamente, vengono sinterizzati in una fornace ad un'alta densità di circa il 97%. Tuttavia, il ritiro non uniforme può essere un problema durante la sinterizzazione e dovrebbe essere tenuto in considerazione in fase di progettazione. Torna all'Indice Plastic Binder Jetting Il Plastoc Binder Jetting è molto simile ai sistemi visti in precedenza. Si tratta di polvere di plastica su cui agisce un legante liquido. Una volta stampate, le parti in plastica vengono rimosse dal loro letto di polvere e spesso possono essere utilizzate senza ulteriori lavorazioni, ma possono essere riempite con un altro materiale, polimerizzate, lucidate o verniciate. Non richiedono una fase di sinterizzazione in forno, come con il metallo. Il getto di legante con polimeri, come con i metalli, presenta una gamma di vantaggi unici rispetto allo stampaggio a iniezione e ad altre tecnologie di stampa 3D di polimeri. Torna all'Indice Stampa 3D a energia diretta (Direct Energy Deposition) La stampa 3D a energia diretta è un processo di stampa 3D dove il materiale viene depositato e contemporaneamente fuso da una potente energia termica. La fonte di energia in questione è solitamente un raggio di elettroni, un laser o un plasma. Il materiale viene fornito sotto forma di filo o polvere. Questa tecnologia può essere usata strato su strato, per realizzare nuovi oggetti, ma può anche essere utilizzata per riparare componenti. Per questo motivo, la Direct Energy Deposition viene spesso utilizzata più per la riparazione che per oggetti completamente nuovi. Quando il materiale utilizzato in questo metodo di stampa è in polvere, la polvere viene spruzzata insieme a un gas inerte per ridurre o eliminare la possibilità di ossidazione. C'è anche la possibilità di utilizzare più polveri per mescolare i materiali e ottenere risultati diversi. Il problema più grande con questo metodo di stampa è che non tutto il materiale viene utilizzato durante il processo. Inevitabilmente, ci sarà della polvere che svolazza al di fuori dell'area interessata e non si scioglie. Un altro aspetto negativo della DED è che le parti prodotte in questo modo spesso richiedono una discreta quantità di post-elaborazione. Caratteristiche principali: Tipi di tecnologia di stampa 3D: Laser Engineered Net Shaping (LENS); Produzione additiva di fasci di elettroni (EBAM); Spray freddo Materiali: metalli, in filo e in polvere Precisione dimensionale: ±0,1 mm Applicazioni comuni: riparazione di componenti automobilistici/aerospaziali di fascia alta, prototipi funzionali e parti finali Punti di forza: Strutture di supporto raramente richieste; miscelazione di metalli; capacità di lavorare in 3 dimensioni Punti deboli: una scarsa finitura superficiale richiede una post-elaborazione; costoso Fanno parte di questo processo di stampa: > Electron Beam Additive Manufacturing (EBAM) > Laser Engineered Net Shaping (LENS) > Cold Spray Electron Beam Additive Manufacturing (EBAM) Si utilizza un raggio di elettroni come fonte di energia su di polvere o filamento. L'EBAM viene spesso eseguito sotto vuoto, riducendo la possibilità che venga contaminato il prodotto finale. Gli strati vengono costruiti uno alla volta, con il fascio di elettroni che crea una vasca di fusione e aggiunge il materiale dove richiesto. I metalli comunemente usati con questa procedura includono leghe di rame, titanio, cobalto e nichel, ma vengono utilizzati anche titanio e altro. Per la maggior parte dei casi, il titanio è il materiale più utilizzato con questo metodo di stampa. Torna all'Indice Laser Engineered Net Shaping (LENS) La stampa 3D di LENS avviene all'interno di una camera ermeticamente sigillata, poiché una polvere di metallo viene alimentata attraverso uno o più ugelli e fusa in modo specifico tramite un potente laser. Un oggetto viene quindi costruito strato dopo strato mentre l'ugello e il laser si muovono, a volte anche su più assi. Per questo motivo, un gas inerte (di solito argon) viene usato nella camera di stampa per ridurre quantità di ossigeno e umidità al suo interno. I metalli comunemente usati in questo processo includono titanio, acciaio inossidabile, alluminio e rame. Questo metodo di stampa viene spesso utilizzato per riparare componenti aerospaziali e automobilistici di fascia alta, come le pale dei motori a reazione, ma può anche essere utilizzato per produrre componenti interi. Spesso, la finitura superficiale delle parti completate non è particolarmente impressionante, quindi è necessario un certo grado di finitura post-produzione per fornire un componente completato. Torna all'Indice Cold Spray Nel Cold Spray, invece di utilizzare una fonte di energia esterna come un raggio di elettroni o un laser, il sistema funziona solo in base alla velocità delle molecole di metallo. Si tratta di una tecnologia di produzione che spruzza polveri metalliche a velocità supersoniche per legarle senza fonderle, il che non produce quasi alcuno stress termico. Dall'inizio degli anni 2000 è utilizzato come processo di rivestimento, ma più recentemente diverse aziende lo hanno adattato per la produzione additiva per stratificare il metallo a una velocità da circa 50 a 100 volte superiore rispetto alle tipiche stampanti 3D in metallo. Potrebbe non sorprendere che questo metodo di stampa 3D non produce stampe di grande qualità superficiale o dettaglio. D'altro lato, la tecnologia non ha bisogno di metallo in polvere di alta qualità per funzionare, e non c'è bisogno di usare gas o camere a vuoto. Spesso è prevista una finitura a CNC, che a volte viene integrata nella macchina stessa. Torna all'Indice Stampa 3D a laminazione La stampa 3D a laminazione è una forma di stampa 3D che prevede il posizionamento di fogli di materiale molto sottili uno sopra l'altro, che vengono tagliati uno alla volta per produrre un oggetto 3D. Gli strati di materiale possono essere fusi insieme utilizzando calore o leganti in base al materiale laminato usato: carta, polimeri e metalli. Questa tecnologia è una delle meno accurate. Le parti prodotte con questo metodo richiedono molte rifiniture di post-produzione. Sostanzialmente, i laminati sono tagliati tramite taglierine laser o CNC mentre la stampa avanza. Il sistema porta inevitabilmente a più sprechi rispetto ad altre tecnologie di stampa 3D. Viene usata per produrre prototipi economici e non funzionali a una velocità relativamente elevata o per produrre articoli compositi, poiché i materiali utilizzati possono essere scambiati durante il processo di stampa. Va sottolineato che gli oggetti prodotti in questo modo non sono abbastanza resistenti per fungere da componenti funzionali. Caratteristiche tecniche: Tipi di tecnologia di stampa 3D: Laminated Object Manufacturing (LOM), Ultrasonic Consolidation (UC) Materiali: carta, polimero e metallo in fogli Precisione dimensionale: ±0,1 mm Applicazioni comuni: prototipi non funzionali, stampe multicolori, stampi per colata Punti di forza: basso costo; produzione rapida possibile; stampe composite Punti deboli: bassa precisione; più rifiuti; molto lavoro di post-produzione richiesto per le parti Fanno parte di questo processo di stampa: > Laminated Object Manufacturing (LOM) > Ultrasonic Consolidation (UC) Laminated Object Manufacturing (LOM) La tecnologia LOM è la forma più comune di stampa 3D con laminazione a fogli. Molto apprezzata per i risultati estetici e il relativo basso costo dei materiali di consumo, la tecnica per laminazione produce oggetti incollando strato su strato il materiale impiegato, tra i quali il più utilizzato è la carta. Si otterrà quindi una risma di fogli con una sequenza ben definita, ognuno dei quali sarà tagliato secondo la forma che dovrà avere lo strato e incollati uno sopra l’altro. I fogli possono anche essere colorati proprio come accade con le macchine Inkjet. Avremo così un oggetto che potrà essere caratterizzato da infinite colorazioni, rinunciando però alle capacità meccaniche. Materiali utilizzati comunemente sono anche film plastici e lamiere metalliche. La quantità di colla applicata durante questo processo di stampa può variare e il sistema di taglio lavora mentre la stampa procede, tagliando una sezione trasversale 2D dell'oggetto 3D finale. Questo metodo di stampa presenta alcuni vantaggi, con stampe rapide e convenienti da produrre, soprattutto sulle grandi dimensioni. Torna all'Indice Ultrasonic Consolidation (UC) Ultrasonic Consolidation (UC) è un modo per stampare in 3D oggetti metallici. A volte lo vedrai indicato come Ultrasonic Additive Manufacturing (UAM). Questo metodo di stampa 3D utilizza vibrazioni e pressioni ultrasoniche per fondere sottili fogli di metallo a bassa temperatura. A causa delle basse temperature usate, le lamiere non vengono fuse insieme ma semplicemente legate insieme a causa della rottura degli ossidi sulla superficie dei metalli. Questo metodo produce poco calore e può legare insieme diversi tipi di metallo, producendo parti multimateriale senza che i metalli si mescolino. Come con altri metodi di stampa della laminazione del foglio, è necessario un sistema di taglio per tagliare la sezione trasversale 2D e, solitamente, una macchina CNC è il metodo più comunemente utilizzato. A causa del processo di taglio, con questo metodo si ottengono più scarti. Spesso è richiesta una finitura in post-produzione. Torna all'Indice
  7. Non conosco Idview e neanche Blender, ma se dici che importando il modello su Blender te lo visulizza tondo (ad esempio il caschetto che hai caricato nell'immagine nel tuo primo commento) deduco che le geometrie importate non siano già elaborate in mesh. Quindi proverei così: importa il caschetto Lego in Blender e esportalo in formato stl andando però a gestire i parametri della mesh. Ribadisco, non uso Blender, ma ipotizzo ti esca una finestra dove puoi infittire la mesh. Quello che devi fare è ottenere una mesh più fitta e con facce più piccole. Su Rhinoceros, per esempio, posso decidere la lunghezza di lato delle singole facce della mesh, oppure l'angolo massimo/minimo, oppure la densità. Perfettamente tondo non uscirà mai, dovrai sempre necessariamente passare dalla mesh. Sia chiaro, il tuo obiettivo è raggiungere la definizione sufficiente per far sì che non si evincano le facce della mesh sul pezzo stampato. Se esageri, non serve a nulla. Facci sapere!
  8. @Enea84 in che estensione sono i file su cui vorresti fare l'operazione di "stondatura"? Se parti da file in mesh - formato stl, obj, ecc. - allora l'operazione necessita di qualche escamotage ed è tutto più brigoso. Se parti da file in formato nativo rispetto al tuo software di stampa 3D, allora basta gestire la fase di meshing.
  9. La stampa 3D low cost ha creato una nuova categoria di imprenditori, capaci di rompere i limiti imposti dai tradizionali metodi produttivi e che hanno aperto strade verso nuove opportunità di business. Guadagnare soldi e avviare una nuova attività in proprio con la stampa 3D è possibile per davvero. In questa guida condividerò con te alcune idee di business, strade che in tanti hanno già intrapreso e validato con successo realizzando il proprio sogno: fare della stampa 3D il proprio lavoro. In questa guida: > Le reali opportunità di business della stampa 3D > Da dove iniziare per guadagnare con la stampa 3D > Idea n.1: Crea e vendi modelli 3D > Idea n.2: Compra una stampante 3D e offri un servizio di stampa 3D > Idea n.3: Inventa un prodotto o servizio online innovativo che sfrutta la stampa 3D > Idea n.4: Offri un servizio di CAD, Scansione 3D e Reverse Engineering > Idea n.5: Offri servizi di progettazione di prodotto > Conclusioni Le reali opportunità di business della stampa 3D Prima di parlare delle opportunità di business della stampa 3D è necessario quantomeno farsi un'idea del motivo per cui questa tecnologia, a partire dal 2010 circa, è stata accolta come una tecnologia estremamente innovativa e redditizia. Potremmo dire che il boom della stampa 3D sia dovuto a una serie di caratteristiche che ne hanno generato il successo che oggi tutti conosciamo. Economicità Dal primo giorno in cui si è iniziato a parlare di stampanti 3D desktop, si è fatto riferimento a macchine estremamente economiche. I primi modelli erano venduti in kit da assemblare e provenivano da progetti open source. Sostanzialmente, chiunque poteva permettersi di acquistare un macchinario di dimensioni ridotte, facile da avviare, avente lo scopo di realizzare oggetti. Il costo ridotto delle macchine si affiancava a quello altrettanto basso di materiali utilizzati con esse. I filamenti per la stampa 3D come il PLA o il PETG sono sempre stati molto economici e versatili. Fabbricazione digitale accessibile Sembrerà una banalità, ma quando le prime stampanti 3D si sono fatte trovare sul mercato il nostro livello di digitalizzazione era molto più basso rispetto ad oggi. Tra le mani avevamo modelli di iPhone che oggi definiremmo vintage e l'iPad era appena stato inventato. In quegli anni si è iniziato a parlare di fabbricazione digitale: niente più disegni su carta, solo modelli 3D per realizzare nuovi oggetti! Chiaramente, processi di realizzazione da modelli digitali già esistevano nell'industria. Questi però sono stati semplificati, al punto da diventare estremamente accessibili da chiunque. Video corsi su YouTube, software in Cloud gratuiti e l'esplosione dei tutorial hanno permesso a qualsiasi interessato di entrare nell'ambito della fabbricazione digitale. Nuove forme Tante delle forme realizzabili con la stampa 3D sono impossibili da ottenere con altri processi di fabbricazione. E se non sono impossibili, sicuramente sono difficoltose, costose e richiedono più passaggi di lavorazione. La stampa 3D ha quindi dato nuova libertà alla creatività di chi realizza i modelli 3D, permettendo di lanciarsi sulla gestione alternativa di pattern, forature e molto altro. Dal 2010 ad oggi la stampa 3D ha fatto passi da gigante. Molte delle aziende che al tempo sono partite commercializzando dei kit da assemblare oggi sono produttori di stampanti 3D professionali. Oggi abbiamo a disposizione una quantità di macchine spropositata, di qualsiasi costo e tipologia. Quindi non preoccuparti: se la tua idea è quella di avviare un business partendo con un budget limitato, sappi che è possibile farlo! Torna all'Indice Da dove iniziare per guadagnare con la stampa 3D La prima cosa che devi fare per iniziare a guadagnare i primi soldi con la stampa 3D è abbastanza ovvia: devi comprare la tua prima stampante 3D. Possedere una stampante ti permette di fare esperienza nell'uso di materiali e nella realizzazione di modelli diversi. Inoltre, avendo la stampante a portata di mano sarai più spronato a utilizzarla e a metterti alla prova. L'esperienza è sicuramente una caratteristica che dovrai acquisire prima di avviare la tua attività con la stampa 3D, e l'unico modo per farlo è stampare, stampare, stampare 🤖 Sono un principiante assoluto e non ho una stampante 3D. Cosa posso fare? Se sei al primo approccio con la stampa 3D e non hai ancora la tua stampante, forse sarai intimorito dai costi che dovresti sostenere. Lo capisco, dopotutto si tratta di un mondo tutto nuovo per te. Per tua fortuna però ho una buona notizia: in commercio esistono stampanti 3D estremamente economiche - parliamo di appena € 200! - e i materiali di consumo sono altrettanto economici. Come scoprirai, stampare in 3D non è affatto difficile ed è una attività alla portata di tutte le tasche. Se davvero sei alle prime armi e devi acquistare la tua prima stampante 3D, ti segnalo la mia guida alle migliori stampanti 3D per principianti. Sono macchine che costano pochissimo e sono dotate di tutte quelle caratteristiche fondamentali per chi parte da zero. Quando avrai la tua macchina, l'esperienza verrà da sé. Saper gestire i materiali e saper riconoscere le varie problematiche man mano che si presentano sarà il tuo pane quotidiano. Vedrai che in pochissimo tempo sarai in grado di gestire i materiali più semplici e che, già con quelli, potrai realizzare quasi il 90% dei modelli. Torna all'Indice Ho già la mia stampante 3D, come faccio a guadagnare con la stampa 3D? Quindi, ti sei comprato una stampante 3D e hai sperimentato fino a ottenere delle stampe perfette. Addirittura hai superato il mio Test per la stampa 3D perfetta a pieni voti 😁 Evidentemente ti sei preparato alla grande, cosa devi fare ora? Non tutti hanno il tempo o l'energia per acquisire le abilità e le conoscenze di cui ti sei dotato. Ciò significa che le ore trascorse a stampare hanno effettivamente creato valore per te e probabilmente ora sei pronto a offrire queste tue conoscenze in cambio di denaro. Molto bene allora: scalda gli estrusori e seguimi nella descrizione delle opportunità di business con la stampa 3D che voglio condividere con te. Quelle che seguono sono le strade più accessibili e validate, che potrai seguire anche tu senza troppe difficoltà. Potrai partire con budget ridotto e tempo limitato. Una volta che l'attività avrà ingranato potrai allora dedicartici al 100%. Crea e vendi modelli 3D Questo è il modo più facile ed economico per cominciare. Essenzialmente equivale a creare un’app per smartphone per poi venderla per le royalties. I passaggi da seguire per mettere in piedi una attività di questo tipo sono i seguenti: Impara a modellare in 3D usa strumenti gratuiti CAD come Sketchup o TinkerCAD. La maggior parte dei principianti rimane stupita da con quanta facilità riescono a ricreare design complessi dopo anche solo pochi tutorial. Modelli sofisticati e di qualità professionale possono essere facilmente creati in 3D, e se ti trovi in difficoltà basta fare appoggio alle molte community e ai tutorial disponibili online; Inventa un design che sfrutta appieno il potere della stampa 3D crea forme complesse facilmente, customizzando in modo economico o creando parti mobili che non richiedono lavoro postumo di assemblaggio. Hai bisogno di ispirazione? Spendi un po’ di tempo a curiosare su Thingiverse per meravigliarti della creatività e le possibilità condivise da altri; Una volta che hai completato il tuo design, accertati che sia stampabile in 3D In Sketchup esiste un plugin che effettua questo controllo e corregge eventualmente gli errori, ma esistono altri programmi che hanno uguali funzioni; Ora che hai il tuo file pronto per la stampa, devi solo trovare un outlet per venderlo Ad esempio siti come CG Trader, dei marketplaces puri che permettono agli utenti di cercare design stampabili in 3D e di stamparli in proprio. Per avviare questa attività devi essere forte nella modellazione 3D. Attenzione però: se vendi modelli per la stampa 3D, devi assicurarti che questi sia facilmente stampabili. E' qui che le tue conoscenze di stampa torneranno estremamente utili e fondamentali per farti realizzare modelli 3D di successo. Torna all'Indice Compra una stampante 3D e offri un servizio di stampa 3D L'acquisto di una stampante 3D non è mai banale. La scelta deve essere ben ponderata e deve rispecchiare le reali necessità di fabbricazione dell'utilizzatore. Nel tuo caso, se intendi offrire un servizio di stampa 3D verso terzi, dovrai anche pensare a quello che gli altri potranno chiederti di produrre. Prima di lanciarti nell'acquisto della tua stampante 3D poniti queste domande basilari: che tipologia di forme dovrò realizzare più di frequente? quali materiali rispecchiano al meglio le necessità dei pezzi che voglio realizzare? che budget ho a disposizione per l'acquisto della stampante 3D, per la sua manutenzione e per i materiali di consumo? quanto voglio produrre per me stesso e quanto per conto terzi? mi conviene avere una sola stampante di alta qualità o più stampanti meno performanti? Una volta che avrai chiarito le idee, allora quello che dovresti fare sono i seguenti passaggi: Acquista la tua stampante 3D assicurandoti che abbia il giusto equilibrio tra costo, qualità delle componenti, versatilità e facilità d’uso; Una volta ricevuta la stampante, sperimenta e capisci appieno le sue funzioni Dovrai imparare a scegliere i parametri di stampa in base a quello che vuoi ottenere in modo da essere efficace e efficiente. Perfino il software per convertire il file stampabile in codice macchina gcode può influenzare l’output. Molte stampanti sono fornite del proprio software per farlo, ma potresti ottenere risultati diversi (forse anche migliori) con altri software di slicing; Offri il tuo servizio magari come parte dell’emergente network di servizi di stampa 3D. Uno dei più conosciuti è 3D Hubs. Oppure crea la tua rete di contatti. Queste sono macchine più conosciute al momento, ottime per iniziare velocemente e a bassissimo costo: Il tuo flusso di lavoro si svolgerà principalmente in questo modo: Un potenziale cliente ti contatta con un modello 3D già pronto e ti chiede di stamparlo; Offri un prezzo per la stampa di questo file; Il cliente accetta; Stampi la parte nelle quantità richieste; Invii loro la parte (o le parti) per posta; Incassa i tuoi meritati guadagni!; Ripeti dal punto 1. Tieni in considerazione che, se vorrai far crescere la tua attività, una buona pianificazione di marketing e promozione saranno importanti. Oltre a usare i classici strumenti come le pubblicità di Google o sui social network, ricorda che le community online sono sempre ricche di opportunità e che raccolgono in un unico posto i tuoi prossimi possibili clienti. E' un po' come se Stampa 3D forum stia lavorando anche per te 😉 Torna all'Indice Inventa un prodotto o servizio online innovativo che sfrutta la stampa 3D Questa opportunità richiede il maggior quantitativo di soldi e creatività, ma ha anche il più alto ritorno potenziale. Qui si crea un business della stampa 3D online dove viene venduto un prodotto rivoluzionato o un servizio legato ad esso. Potrebbe anche trattarsi di un servizio utile a chi stampa in 3D. Ti do qualche spunto: Focalizzati sulla libertà che offre la stampa 3D Per esempio l’abilità di modificare facilmente un design permette la customizzazione automatizzata di un prodotto. Magari gli utenti possono creare da soli personalizzazioni di un modello 3D direttamente sul tuo sito e scaricare il modello pagandoti; Se hai in mente la tua idea di servizio, sviluppa un sito Dovresti concentrarti sulle caratteristiche di usabilità che fanno riferimento in modo unico alla stampa 3D, semplificandone l'uso al massimo; Pensa a quali stampanti 3D ti servono Se devi stampare tu, scegli macchine che ti garantiscano valide prestazioni. Se a stampare sono i tuoi clienti, assicurati di avere una soluzione di ripiego in caso loro abbiano problemi di realizzazione. Ti assicuro che sarà molto apprezzata! Se vuoi puoi creare una partnership con un service di stampa 3D già esistente. Sicuramente ti costerà meno, ma non avrai sotto controllo tutto il processo. In questo caso specifico di business dobbiamo specificare in modo chiaro due cose: le tue conoscenze di stampa 3D sono fondamentali per creare un servizio efficace e utile ai tuoi clienti; avrai bisogno di un team di lavoro, composto da programmatori e web designers, che necessariamente richiederanno la disponibilità di un budget. Torna all'Indice Offri un servizio di CAD, Scansione 3D e Reverse Engineering Spesso non ci si pensa, ma attorno alla stampa 3D ruotano tutta una serie di servizi che possono generare guadagni economici abbastanza consistenti. Alcuni di questi sono la progettazione CAD, la scansione 3D e il Reverse Engineering. Questa idea di business si basa sulle seguenti constatazioni: serve sempre qualcuno che sia in grado di realizzare ottimi modelli 3D; la scansione 3D è un processo collaterale alla stampa 3D e a volte ha un ruolo fondamentale; ancora tante aziende necessitano di riportare in digitale disegni 2D o oggetti realizzati in modo artigianale. Per farlo, serve il Reverse Engineering, ossia la combinazione dei due punti precedenti. Il flusso di lavoro di questo suggerimento è più o meno questo: Un potenziale cliente ti contatta con un disegno 2D di un componente che desidera stampare o con un componente fisico che desidera digitalizzare e stampare; Offri un prezzo per il tempo che dedicherai alla modellazione CAD per creare un gemello digitale del componente. Considera anche il costo per stampare la parte, se richiesto; Il cliente accetta; Se si tratta di un disegno 2D, usa le tue abilità di modellazione 3D per creare la parte in digitale. Se si tratta di una parte fisica, a seconda della sua complessità, usa strumenti di misura e scanner 3D; Usa la tua stampante 3D per stampare e validare la geometria del componente; Invia la parte stampata al cliente, insieme al gemello digitale che hai realizzato Incassa la fattura e guadagna la tua pagnotta! Per attuare questa idea di business dovrai acquisire conoscenze di modellazione 3D oltre a quelle di stampa 3D. Torna all'Indice Offri servizi di progettazione di prodotto Questa è la soluzione di guadagno più creativa e divertente: utilizzare le tue abilità di modellazione e stampa 3D per inventare nuovi incredibili prodotti da vendere. Puoi inventare oggetti nuovi, creare splendidi gioielli, progettare pezzi d'arredo. Insomma, in base ai tuoi interessi e alle tue capacità, puoi letteralmente progettare e stampare qualsiasi cosa! Il flusso di lavoro di questo suggerimento è più o meno questo: Cerca di definire quali prodotti ritieni che le persone abbiano bisogno o che desiderano; Inizia a creare i modelli 3D; Stampa una piccola serie delle tue creazioni; Fai vedere i tuoi prodotti a amici, familiari e potenziali clienti; Raccogli importantissimi feedback dei tuoi tester per creare un prodotto più desiderabile e vendibile; Perfeziona il tuo prodotto; Raccogli i tuoi profitti. Questo modello richiede una forte attenzione al prodotto, alle vendite e al marketing. Dovrai promuovere le tue realizzazioni online, magari usando Etsy, e negli eventi fisici come fiere, eventi di networking, mercati e persino avvicinarti ai commercianti che potrebbero rivendere il tuo lavoro. Tanto dipenderà dalle tue capacità di progettazione e dalla tua sensibilità. Un buon prodotto deve anche essere un bel prodotto. La tua stampante 3D sarà una fedele compagna di viaggio. Ti permetterà di sperimentare forme e ingranaggi, di realizzare prototipi e di fare la tua prima piccola produzione. Torna all'Indice Conclusioni La strada per creare un proprio business della stampa 3D è dura e non priva di alti e bassi, ma allo stesso tempo prolifera di possibilità e di occasioni che aspettano solo di essere colte al volo. Lavorare per portare a galla la propria visione può garantire molti soldi a chi si impegna e si mette in gioco. Inoltre, sarà davvero molto divertente. Tutto ciò di cui il mondo ha bisogno è di persone tenaci e sveglie che riescono a rendere il massimo dalla propria creatività, dalla propria esuberanza di volersi buttare in questo mare di possibilità, cercando di prendere il pesce più grosso con il proprio business della stampa 3D. Torna all'Indice
  10. Ormai non ci crede più nessuno. Hanno perso molta credibilità dopo tutti questi anni di stop. Anche io voto Ideamaker, un clone di Simplify ben fatto
  11. Sai spiegarmi cosa intendi per "Dynamics"? E' un profilo di stampa che usi nel tuo slicer? Che slicer usi? A parte questo, la ruota dentata si muove e spinge il filo durante la stampa? L'estrusore si scalda e raggiunge la temperatura di stampa?
  12. Ciao Community, lascio qui questo post, perché vedo che in tanti ancora utilizzano le normali discussioni in stile "forum" per postare immagini delle proprie realizzazioni, invece di utilizzare la Galleria fotografica. La Galleria è stata implementata qualche mese fa e permette di visualizzare in modo molto più immediato le immagini caricate. Personalmente, credo che sia un sistema molto più comodo per far vedere le mie ultime realizzazioni. Inoltre, le immagini possono ricevere le classiche reazioni (i "mi piace") e i commenti, proprio come in una normale discussione. Così, volevo ricordare a tutti che abbiamo a disposizione questo strumento e sarebbe bello vederlo carico di nuove immagini, così che non vadano perse col tempo in questo forum. Questa è una guida che ho scritto qualche mese fa e che descrive come funziona la Galleria:
  13. da come descrivi il problema, anche io penserei al firmware. Hai provato a contattare l'assistenza? O forse sul sito Creality c'è un aggiornamento da scaricare?
  14. Purtroppo è un problemino più comune di quanto si possa immaginare. Grazie per la segnalazione, peccato siano così fragili
  15. Leggo solo ora... e quale sarebbe il motivo di divieto? Questo è un ottimo punto. Però, a meno che non si vadano a trovare stampanti estremamente sconosciute, qualsiasi macchina ha certificazione CE.
  16. Indifferenziato, per questi motivi. Grazie @gio904 per esserti attivato in prima persona!
  17. Bellissimo! Viva l'ignoranza!!! 🤣 Se ti va, pubblica le foto nella galleria immagini: https://www.stampa3d-forum.it/gallery/
  18. Purtroppo non so aiutarti, ci vuole qualcuno che possiede una Voxelab Aquila per darti supporto. Forse il consiglio di Killrob è una buona idea: se non ci sono grosse migliorie e la stampante che avevi rispondeva alle tue necessità, perché cambiare? Solo opinioni eh!
  19. Ci sono margini di miglioramento, ma in generale direi sia un ottimo risultato. Ti dirò di più, con la Formlabs Form 2 che utilizzavo i pezzi mi uscivano più o meno con questa finitura. Poi ammetto di non aver mai perso tanto tempo nel manutenerla a dovere... dovevo stampare in continuazione! Ben fatto!
  20. E' lodevole il fatto che davvero vi poniate tutte queste domande sul corretto smaltimento dei residui, è una cosa poco comune eppure estremamente importante per il nostro ambiente. Bravi, per davvero! Noi abbiamo sempre raccolto gli scarti (alcol isoproipilico, acqua, residui filtrati) e portato in isola ecologica. Lì tendenzialmente sanno cosa fare, anche se ammetto di non aver mai approfondito. Per quanto riguarda le parti che restano lucide, è possibile che il trattamento post stampa non avvenga in modo uniforme? Mi sembra tu sia stato minuzioso in ogni fase di pulizia, non darei la colpa a te @dnasini 😉 Mi fate pensare che servirebbe una guida dedicata allo smaltimento dei residui di resina... la farò!
  21. Le grate sono molto sottili già a quella dimensione, riducendo rischi che non escano o che si spezzino durante la stampa. Per gli altri oggetti, credo tu ce la possa fare. Però sei un po' borderline 😅 Sei tu che progetti i pezzi? In tal caso puoi disegnarli tenendo in considerazione le tolleranze giuste.
×
×
  • Crea Nuovo...